考研数学常用麦克劳林公式是什么?(麦克劳林公式的魔法)

考研数学常用麦克劳林公式是什么?(麦克劳林公式的魔法)

admin 2025-09-10 自助起名 4 次浏览 0个评论
麦克劳林公式的魔法,利用麦克劳林公式求复杂的不定式极限

求不定式极限最常用的方法,是利用洛必达法则,即对分子分母同时求导,再求极限。洛必达法则可以重复运用,直至求出极限为止。但是有些不定式极限,反复运用洛必达法则求解,可能相当繁琐,比如下面这个不定式极限:

求lim(x->0)(cosx-e^(-x^2/2)/x^4).

解1:【我们先来看看,运用洛必达法则是怎么求的。为了条理更清楚,下面采用拆解的方法】

因为(cosx-e^(-x^2/2))’=-sinx+xe^(-x^2/2)->0 (x->0),

(-sinx+xe^(-x^2/2))'=-cosx+e^(-x^2/2)-x^2e^(-x^2/2)->0 (x->0),

(-cosx+e^(-x^2/2)-x^2e^(-x^2/2))'=sinx-xe^(-x^2/2)-2xe^(-x^2/2)+x^3e^(-x^2/2)=sinx-3xe^(-x^2/2)+x^3e^(-x^2/2)->0 (x->0),

(sinx-3xe^(-x^2/2)+x^3e^(-x^2/2))'=cosx-3e^(-x^2/2)+3x^2e^(-x^2/2)+3x^2e^(-x^2/2)-x^4e^(-x^2/2)=cosx-3e^(-x^2/2)+6x^2e^(-x^2/2)-x^4e^(-x^2/2)->-2 (x->0),

即(cosx-e^(-x^2/2))^(4)=-2,

又(x^4)^(4)=(4x^3)"'=(12x^2)"=(24x)'=24,

所以原极限=-2/24=-1/12.

如果您觉得上面这种方法也挺简单的,那也可以坚持用这种方法的。不过下面利用麦克劳林公式求解的方法,肯定要简便得多的。

解2:【利用麦克劳林公式的关键是熟记常用函数的麦克劳林展开式,其中】

cosx=1-x^2/2!+x^4/4!+…+(-1)^m*x^(2m)/(2m)!+o(x^(2m)),

e^(-x^2/2)=1-x^2/2+x^4/(2^2*2!)+…+(-1)^m*x^(2m)/(2^m*m!)+o(x^(2m)),

取m=2, 【即2m=4, 只需保持与分母的次数相同就可以了】

则原极限=lim(x->0)(x^4/24-x^4/8)/x^4=1/24-1/8=-1/12. 【这里其实仍运用了洛必达法则的思想,低次项求四阶导数后,肯定等于0,无穷小量的极限也等于0,所以它们都被省略掉了】

两种方法比较一下,明眼人都能看得出来,利用麦克劳林公式的方法要简便得多。不过运用麦克劳林展开式求极限有一个前提,那就是x必须是趋于0的。

转载请注明来自1Mot起名网,本文标题:《考研数学常用麦克劳林公式是什么?(麦克劳林公式的魔法)》

每一天,每一秒,你所做的决定都会改变你的人生!

发表评论

快捷回复:

评论列表 (暂无评论,4人围观)参与讨论

还没有评论,来说两句吧...